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ABSTRACT In recent years, cloud computing research, specifically data replication techniques and their
applications, has been growing. If the replicas number is raised and put in multiple positions, it will be
expensive to maintain the data usability, performance and stability of the application systems. In this paper,
two bio- inspired algorithms were proposed to improve both selection and placement of data replicas in
the cloud environment. The suggested algorithms for dynamic data replication are multi-objective particle
swarm optimization (MO-PSO) and ant colony optimization (MO-ACO). The first suggested algorithm, i.e.,
MO-PSO, is employed to obtain the best selected data replica depend on the most frequent one. However,
the second suggested algorithm, i.e., MO-ACO, is employed to obtain the best data replica placement depend
on the shortest distance, and the replicas availability. A simulation of the suggested strategy was carried
out using CloudSim. Each data center (DC) includes hosts with set of virtual machines (VMs). The data
replication order is determined at random from a thousand cloudlets. All replication files are randomly
distributed in the proposed architecture. The performance of suggested techniques was evaluated against
several approaches including: Adaptive Replica Dynamic Strategy (ARDS), Enhance Fast Spread (EFS),
Genetic Algorithm (GA), Replica Selection and Placement (RSP), Popular File Replication First (PFRF), and
Dynamic Cost-aware Re-replication and Re-balancing Strategy (DCR2S). The simulation results prove that
MOPSO gives improved data replication compared against other algorithms. Additionally, MOACO realizes
higher data availability, lower cost, and less bandwidth consumption compared with other algorithms.

INDEX TERMS Dynamic replication, cloud environments, CloudSim, multi objective optimization, particle
swarm optimization and ant colony optimization.

I. INTRODUCTION
Cloud environments provide several services, such as pay-
per-use virtual computing and network resources. The cloud’s
characteristics include storage, bandwidth, and access to
valuable data resources [1], [2]. A cloud environment
incorporates infrastructure as a service (IaaS), platform as a
service (PaaS) and software as a service (SaaS) [3], [4]. Fur-
thermore, the cloud is cheaper compared with traditional sys-
tems and offers benefits such as subscription-based billing,
scalability, dynamicity, and elasticity [5], [6]. Load balanc-
ing in the cloud environment is very important to achieve
best performance [7]–[9]. It allocates tasks to realize optimal
access to available resources [10]–[15].
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Data-intensive applications, including sharing and dissem-
ination from distant points to nearby points through nodes or
geographical sites, commonly employ replication techniques
[16], [17]. In a cloud system, replication methods can be used
as a cluster. The cluster ensures the accuracy and integrity
of different replications within nodes by allowing for data
availability and scalability. This procedure entails reading
and writing on data replica using protocols that are specific
to the device [18]–[21]. In [22]–[25], there are reviews that
present static and dynamic replications. Indeed, both static
and dynamic replications are facing three significant ques-
tions that need to be answered: 1) what data should be repli-
cated? 2) when the data should be replicated? and 3) where
the new replicas should be placed? These three main open
questions require to be tackled for data replication in the
cloud environments [26]–[31].
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A. MOTIVATION
In data processing, data replication is one of the most vital
subjects. However, the implementation of applications in
cloud still gives low reliability and efficiency. If the replicas
number is increased and put in various locations, it would
be expensive to maintain the data performance, availability,
reliability of a system.

Data replication is expressed as a multi-objective opti-
mization problem and swarm-intelligence (SI) algorithms
were applied for dynamic data replication. SI algorithms are
applied to discover the optimal solutions. These algorithms
also give better results than the static replication methods.

B. CONTRIBUTIONS
In this paper, intelligent dynamic data replication algo-
rithms are proposed based on bio-inspired algorithms with
multi-objective (MO-PSO, and MO-ACO). The introduced
strategies are used for both data replicas selection and
placement in various datacenters. The introduced algorithms
are tested using CloudSim. The performance of suggested
techniques were evaluated against several replication strate-
gies including, Adaptive Replica Dynamic Strategy (ARDS),
Enhance Fast Spread (EFS), Genetic Algorithm (GA),
Replica Selection and Placement (RSP), Popular File Repli-
cation First (PFRF), and Dynamic Cost-aware Re-replication
and Re-balancing Strategy (DCR2S). The experimental
results illustrate that MOPSO reaches improved data replica-
tion compared with other algorithms. Furthermore, MOACO
realizes lower cost, less bandwidth consumption, and higher
data availability compared with other techniques.

C. PAPER ORGANIZATION
The rest of this paper is organized as follows. Section II is
devoted for related work. Section III presents the suggested
approach for both replica selection and placement. Moreover,
section IV presents the two proposed algorithms. Section V
illustrates the simulation configuration. While section VI
discusses and analyzes the results, section VII addresses the
performance evaluation measures. Finally, section VIII con-
cludes the suggested work and highlights the future work.

II. RELATED WORK
Many relevant studies in the literature addressed data replica-
tion techniques in the cloud environment, as follows:

N. Mansouri et al. presented a dynamic replication
approach access data applying the 80/20 idea. The introduced
approach was evaluated with ADRS and RSP algorithms, and
achieved best accuracy [32].

D. Sun et al. introduced a dynamic data replication strat-
egy (MDDRS). The numbers of newly placed replications
were effectively determined and allocated in parallel between
DCs using the mathematical model in CloudSim. Moreover,
the study carried out a review of the proper distribution
approach in the cloud environment [33].

N. Kaur and et al. suggested an enhanced data replication
approach. The suggested approach is an enhanced version
of the research in [33] and they decided the minimum data
replicas and file availability adjacent the users in an ordinary
tier without missing data [34].

N. Mansouri illustrated a model called ADRS for replica
placement and replacement via datacenters. The ADRS was
evaluated against five algorithms, i.e., ARS, DRSP, CIR,
CDRM and build-time strategies; the outcomes proved its
ideal proficiency over those of the other algorithms [35].

K. Kumar et al. suggested a data replication technique to
optimize consumption of resources in cloud environments.
Furthermore, the proposed solution reduces the total time for
a search request or another procedure, and it shares structures
in the device context for analyzing work-loads and storing
data utilizing mathematical models [36].

X. Bai et al. introduced a response time-based replica man-
agement (RTRM) model that selects replicas and allocates
them in nodes automatically. The model is constrained by
the limited response time when applied to heterogeneous
HDFS platforms. If the time exceeds the specified threshold,
the RTRMalgorithmwill be automatically increased upon the
user’s request [37].

D. Yuan et al. proposed a technique for data placement.
It was depending on a k-means clustering algorithm. The
presented strategy dynamically moves to the best datacenters
via the network. When there are no more suitable places for
the small data collected while completing a mission, the tech-
nique looks for other cloud sites [38].

C. Hamdeni et al. suggested a novel method for estimating
the popularity in databases via nodes. To access data replicas
using the different data popularity methods in new replication
management contexts, one of the proposed methods is the
access time, which has a dynamic nature in the underlying
system. The data popularity approach analyzes the historical
data access or most currently data that is easily accessible
and can be measured by the replication management system.
The simulation results appeared that the suggested strategy
can adjust the most common file access time and realize file
availability [39].

N. Maheshwari et al. proposed a dynamic data placement
approach using GridSim. It preserves the power consump-
tion among clusters. The suggested model achieved effective
power availability in the development of distributed data [17].

Q. Xu et al. introduced a data placement strategy based on a
genetic algorithm (DPSBGA) to improve the data placement
via datacenters. It reduces the scheduling processes among
the datacenters [40].

Z. Li et al. introduced a replication method to improve
the high-level architecture performance. Different replica-
tions are developed in the underlying approach. The proposed
structure employed various synchronization approaches for
rapid replications [41].

Z. Tang et al. suggested a load balancing data placement
method in a Spark environment for optimizing the load bal-
ancing among the nodes. The proposed algorithm handled
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the data in all clusters, reduced the time of execution and
balanced the tasks among nodes [42].

T. Yuan et al. suggested two methods for both partially and
fully replicated systems. For the purpose of executing causal
consistency tasks in stable large-scale distributed networks,
the two approaches realized the causal consistency of partial
and absolute replications [43].

H. Casanva et al. analyzed the replication process effects
on an application that had large-scale concurrent executions
and synchronized complete replication checkpointing. The
authors further propose a new perspective on exponential
failure distributions, which includes the average amount and
average out time during regression cycles over a broad range
of systems [44].

P. Matri et al. suggested a decentralized, write-enabled
dynamic geo-replication (DWEDGR) approach. DWEDGR
lets users to connect to the closest replication between nodes
without having to make a prior request for data that can be
changed [45].

M. Chang Lee et al. suggested the popular file replicate
first (PFRF) method. Replications to suitable locations was
adopted so that users could access suitable distributions using
clusters. Both Zipf distributions and geometric distributions
are employed to assess the suggested method. The replica-
tion placements can be dynamically changed at any time
according to each file’s popularity, and further analysis can
be conducted to balance tasks [46].

N. Mansouri et al. introduced a replication method using
fuzzy based self-defense algorithm. Six optimization objec-
tives (i.e., availability, service time, load, energy consump-
tion, latency, and centrality) are used. This strategy has
achieved good results in all mentioned objectives [47].

L.Chunlin et al. designed a dynamic multi-objective opti-
mized replica placement strategy in edge cloud. The min-
imum data replicas, data transmission, file availability and
unavailability are determined nearby the users. Results indi-
cated that the suggested strategy achieved good results in all
aspects [48].

Y. Ebadi et al. introduced an energy aware technique
for data replication employing a tabu search and PSO.
The numbers of newly placed replications were effectively
determined [49].

A comparison has been presented for different replica-
tion techniques and strategies, like the replicas selection and
placement among different nodes. Previous studies have sev-
eral problems that should be investigated for replications in
the cloud environment. Most of these strategies have dis-
regarded the usage of AI with MOO. Our MO-PSO and
MO-ACO algorithms have achieved optimal access to the
selection and placement of replicas via nodes. Furthermore,
replicas are accessed using the least-cost path as well as the
maximum number of tasks by users.

A. DISCUSSION AND RELATED WORK
In TABLE 1, a comparison between previous studies in cloud
computing has been presented in terms of its advantages and

limitations. Most of previous studies have disregard multiob-
jective swarm intelligence algorithms. The limitations of this
work are also summarized. The consistency and the energy
consumed were not addressed in this work.

III. THE PROPOSED DATA SELECTION AND
PLACEMENT ARCHITECTURE
This section presents the proposed structural model for both
selection and placement of replicas in cloud environments.
To maximize the data replicas selection and placement,
a heterogeneous method using swarm intelligence algorithms
were employed. FIGURE 1 depicts the proposed scheme,
which contains data centers placed in various stages. The
high datacenters, which are more highly centralized and have
better data access, storage capacity, output, and a greater
number of hosts and VMs compared with other datacenters,
are the first. The mid DC is the second stage, which has less
entire components than the first stage. Low DC components
make up the third level, which has fewer entire components
than the second. Generally, the datacenters are linked to one
another on a hierarchical basis, either on the same level
or at higher levels. The proposed infrastructure consists of
data centers, brokers, replica catalogs, replica management
systems, tasks, hosts, VMs, and hierarchical network users
that link data centers to each other. Applying MO-ACO, and
MO-PSO techniques enhances the availability, reduces the
cost, enables tasks to be completed faster than the algorithms
that are utilized when selecting and placing replicas via
CloudSim.

The datacenters are represented as DCs = {dc1, dc2, . . . ,
dcn}, where n is the count of DCs. The physical machine (PM)
can be shown as PM = {pm1, pm2, . . . , pmx}, where x rep-
resents a set PMs in DCs. The VMs can be shown as VM =
{vm1, vm2, . . . , vms}, where s is the count of VMs that are
allocated in the PMs. The data replication can be expressed
as F = {f1, f2, . . . , fy}, where y is the count of replicas. The
main storage unit can be expressed as B = {b1, b2, . . . , by},
where y is a set of various data replicas that are stored in DCs.
The replica files are stored in high data centers and uniformly
distributed in the proposed technique. The replica catalog,
which records each replica location in the various DCs, can
be used to save different values of the probability = pro(bap)
in each DC.

A. DATA FILE AVAILABILITY
Availability can be described as ‘‘readiness to provide correct
services’’. On request, all users should be able to access
complete replications of the data. The data availability is
also a critical problem for consumers of the cloud. A server
with inaccessible data is triggered by lost data replication or
network malfunction in the cloud [33], [34].

Replicas can be stored in several DCs, andmultiple replicas
can be allocated in the same DC to guarantee the presence
of multiple DC blocks. High DCs come at higher costs,
improved storage access and stability and, as a result, blocks
inside DCs achieves high availability. However, low DCs
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TABLE 1. Comparison of the reviewed data replication techniques in the
cloud computing.

FIGURE 1. The proposed data selection and placement architecture.

come at lower costs, worse reliability, and bad availability.
These DCs can be calculated using Eq. (1) to Eq. (4) as
follows:

pro(bapj)highDC
> pro(bapj)midDC > pro(bapj)lowDC (1)

pro(flak )=

(1−
∏bnrk

i=1
(1− pro(bapj)i))nbk case 1∏nbk

i=1
(1−

∏bnrk

i=1
(1−pro(bapj)i)) case 2

(2)

pro(flak ) =

1− (1−
∏bnrk

i=1
(1− pro(bapj)i))nbk

1−
∏nbk

i=1
(1−

∏bnrk

i=1
(1− pro(bapj)i))

(3)

Let the block available probability pro(bapj):

highDC = 0.9 > midDC = 0.6 > lowDC = 0.3 (4)

where

pro(bapj) Block availability probability
b Blocks

pro(flak ) File availability Probability
nbk Number of block
bnrk Number of replica of a data file dfk

pro(flaj) Block unavailability probability
nak Number of access task have request

pro(flak ) File unavailability probability
highDC High datacenter
midDC Medium datacenter
lowDC Low datacenter

B. DATA REPLICATION OPTIMIZATION IN CLOUD
COMPUTING
Cloud computing using DCs consists of replicas and PMs,
VMs with certain storage spaces, distances, times and every
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replica cost of the DCs. To achieve the contradicting targets,
including time, costs and space, for optimizing data repli-
cation access; both selection and placement are considered
two of the most significant issues that face users in the cloud.
The target with the least expensive and shortest path for data
replication should be selected to reach high availability.

1) REPLICATION COSTS IN DATACENTERS
There is a set of DC costs that distinguish low DCs, mid
DCs, and high DCs. This set involves prices, availability
probabilities, speeds, reliability and cloud performance. The
DCs’ costs are essential factors that contain the MOO factors
that pick and position replicas over DCs. The replication total
cost must be held as low as possible in order to minimize
replication through DCs and guarantee that the budget is
adequate for users.

costk (dcs) =
y∑

x=1

(cost(dcy) ∗ bnrk (dcy)) (5)

2) MINIMUM DISTANCE BETWEEN DATACENTERS
The distance among DCs is determined on the basis of adata
replicas’ access, which can be measured using Eq. (6) and
Eq. (7). The best solution exploits the link between two
DCs (i and j). By confirming that this equation ensures their
non-passing in an infinite ring, this equation ensures that dci
and dcj pass.

Min
n∑
i=1

n∑
j=1

dijxij (6)

S.T:
n∑
i=1

nixi≥k , xi ∈ {0, 1}, (1 ≤ i ≤ n) (7)

3) KNAPSACK PROBLEM
The knapsack is considered an NP-hard problem. Any object
has its allocated value and weight. The goal is to reduce
cloud costs by guaranteeing that the budget is appropriate for
consumers by using Eq. (8) and Eq. (9):

maximize px =
n∑
j=1

pjxj (8)

S.T: wx =
n∑
j=1

wijxj ≤ vi (9)

where
xj ∈ {0, 1}, j = 1, 2, . . . , n
p = (p1, p2, . . . , pn)
w = w1,w2, . . . ,wn
i = 1, 2, . . . ,m

Each object j ∈ J has profit pj andweightwj in dimension i,
where (1 ≤ i ≤ m). Binary variable xj indicates whether
object j is included in the knapsack (xj = 1) or not (xj = 0).
TABLE 2 shows the parameters of knapsack algorithm,

weights (w) and values (v). The algorithm determines what

TABLE 2. Knapsack algorithm parameters.

is accepted and rejected according to the files placed and
takes into consideration the cost of each file on the datacenter.
Thus, the main three data file replicas need to be replicated on
mid and lower cost data centers, i.e., the low datacenters in the
path of maximum tasks from users. MO-PSO and MO-ACO
are employed to estimate the data availability and optimal
costs in DCs.

IV. PROPOSED METHODS FOR DATA REPLICATION
The proposed scheme combines two algorithms: PSO and
ACO. PSO will pick the data replicas and ACO will position
the data replicas. The proposed functional structure therefore
has three fundamental characteristics: availability of files,
time of access and costs. Zipf and the geometric distribution
are utilized to spread the data replicas in the cloud.

A. THE PROPOSED STRATEGY USING PSO TO DETERMINE
WHICH FILE TO REPLICATE AND WHEN TO REPLICATE
In this subsection, we introduce MO-PSO algorithm for data
replication using CloudSim. For each particle with the best
data replica, a fitness function tests the optimally chosen data
replication. The velocity, position and inertia weight updates
are shown in Eq. (10), Eq. (11) and Eq. (12) [50]–[55] as
follows:

V k+1
i,j = W .V k

i,j + C1R1(pbestki,j − X
k
i,j)

+C2R2(gbestki,j − X
k
i,j) (10)

where

V k+1
i,j particle’s new velocity
V k
i,j particle’s current velocity

C1,C2 positive constants acceleration parameters
pbestki,j personal best position particle
X ki,j position of ith particle in jth swarm

R1,R2 random numbers in the range [0,1]
gbestki,j global best position particle

X k+1i,j = X ki,j + V
k+1
i,j (11)

where

X k+1i,j new position of particle
k iteration population

i ∈ 1, 2, 3, . . . ,m m is members number in an iteration
j ∈ 1, 2, 3, . . . , d d is the size of the swarm
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w = wmax −
wmax − wmin
itermax

∗ iter (12)

where

w inertia weight
wmax max value of inertia weight
wmin min value of inertia weight
itermax maximum number of iterations
iter current iteration number

The proposed MO-PSO algorithm is introduced in
(Algorithm 1). The fitness function is shown in Eq. (13) to
Eq. (15).

Algorithm 1: The Proposed MOPSO for Selecting Data
Replicas on Cloud Environment
Input: Size α of population, Number of iterations,

Datacenters, Data availability, Improved
Time-Based Decay Function

Output: Selected Pposition← (OptimalBestReplica,
OptimalTotalExecutionTime and OptimalCosts)

begin
No. of iterations and No. of particles
Initialize set values of particle swarm (iteration)
Initialize un / availability probabilities
Initialize replicas according to costs and time
repeat

for j = 1 to α do
foreach data replication in DC
do

Calculate fitness function
Update velocity
Update position
Pvelocity← Random velocity()
Pposition← Random position()
Pbest ← Pposition
if α ≤ 0 then

Exploitation
else

Exploration
Select best data replication

Calculate the ITBDF
Calculate the replica factor
Calculate the costs

until reaching the maximum number of iterations,
or finding access solution
Return the optimal best replica solution

B. FRAGMENT TYPE EVALUATION AND ACCESS
TIME ESTIMATION
In DCs with varying accesses and data intervals, the ITBDF
is utilized to assess priorities and data replication weights.
The ITBDF weights access to latest data replicas and sep-
arates previously accessible data for this concept. Based on
the proposed MO-PSO algorithm, which is applied in our

framework, the ITBDF assigns priority and weight for repli-
cas. The ITBDF is expressed in Eq. (13) and Eq. (15):

ITBDF(ta, tb) = e−(ta−tb)k ∀ k ∈ {1, 2, 3, . . . , n} (13)

ITBDF(ta, tb) = e−(4t)k (14)

where 4t = (ta − tb)
where

ta current time
tb start time
k step value
e exponential function decay.

RFk =

∑ta
ti=tb (nak (ti, ti + 1) ∗ ITBDF(ti, ta))

bnrk ∗
∑nbk

i=1 sbi
(15)

where

nak the No. of accesses
bnrk the No. of replicas
nbk the No. of blocks
sbi the size of a block

C. THE PROPOSED MO-ACO FOR PLACEMENT
The usage of the proposed MO-ACO algorithm on a large
scale to implement the placement in CloudSim is discussed in
this paragraph. Replica management determines new replica
placements based on replication costs as well as datacenter
space at this level. After that, udata replicas are accessible
to users. The proposed MO-ACO algorithm is employed to
optimally place replicas in DCs to satisfy user requests.

The objective function is employed to calculate the cumu-
lative pheromones at various points in the paths, the shift from
DCi to DCj is estimated as shown in Eq. (16) to Eq. (21)
[56], [57]:

pij =


[τij]α[ηij]β∑
s∈k [τis]α[ηij]β

0 Otherwise if j ∈ allowed k
(16)

The chosen DC is estimated according to Eq. (17):

j =

{
argmaxs∈allowed k{[τij]α[ηij]β}, ifq≤q0, if q>q0
j

(17)

The ant’s detection array is calculated in accordance with
Eq. (18):

ηij =
1
dij

(18)

After each repetition, the pheromone values on the routes
are changed. The pheromone value is a positive constant as
ants near the end of their travel line. Eq.(19) can be used to
measure the modified local pheromone value:

τij = (1− p)τij + pτ0 ,∀(i, j) ∈ tk ,where(0 < p ≤ 1) (19)
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TABLE 3. Notation of ant colony optimization (ACO).

After evaporation, each ant contributes pheromones to the
routes using the fixed process, and Eq. (20)adjusts the modi-
fied global pheromone value:

τij = (1− p)+ p.
m∑
k=1

1τij (20)

1τij : is the amount of pheromone applied to an ant’s path,
as shown in Eq. (21):

1τij =


1
ck

if ∀(i, j) ∈ tk

0 otherwise
(21)

Depending on geometric and Zipf distributions, the pro-
posed MO-ACO algorithm positions and accesses optimal
replicas. The fitness function is calculated for eachMO-ACO
of the replica positions in the cloud via DCs.

D. REPLICA SELECTION AND PLACEMENT WITH ZIPF AND
GEOMETRIC DISTRIBUTIONS
To pick and position replicas in the cloud via DCs, Zipf and
geometric distributions are employed. Users’ activities are
tracked by a distribution, which determines the most common
data replicas and positions them in DCs closer to the users.
A Zipf distribution is employed to model the scale at random,
and the replica places are chosen based on their importance
and ease of access:

p(fi) =
1
iα

(22)

where i = 1, 2, . . . , n; and α is a data distribution factor,
where 0 ≤ α < 1.
With greater access and higher weights, a geometric distri-

bution offers the most common data with a greater degree of
distinction. The data can be spread using DCs, and the search
space can be utilized to discover further random solutions as
shown:

p(i) = (1− p)i−1.p (23)

where i = 1, 2, . . . , n and 0 < p < 1. A higher p
indicates that a smaller percentage of the data is accessed
more frequently.

When users execute the replica control job, we decide that
the algorithm accesses and places the most appropriate data
node. The most powerful algorithm for finding the shortest
and least cost path is MO-ACO.

The proposed MO-ACO algorithm is presented in
(Algorithm 2). The fitness function is presented in ‘‘Eq. (16)
to Eq. (23)’’.

Algorithm 2: The Proposed MOACO for Data Replica
Placement in a Cloud Environment
Input: Population size, No. of iterations,Minimum

distance between DCs
Output: Optimal Data Replica Placement
begin

Define values of parameters, No. of iterations and
No. of ants
Initialize un / availability probabilities
Initialize distance between DCs
Initialize data replication costs and size
Initialize optimal best data replica placement in DC
solution
repeat

for I = 1 to (No. of ants) do
Step = Step + 1
Set all ant distribution in DC
foreach DC in current system do

Calculate desirability of the movement
Calculate probability of the movement
if q ≤ q0 then

Exploitation
else

Exploration

foreach dimension do
Calculate fitness function
Update local pheromone
Update global pheromone
Set local pheromone update
Set global pheromone update
Set replica placement in DC
Until all replicas are selected
Until all replicas are placed
if the storage space of the DC is small
then

Apply the global update rule
else

Delete small replica popularities

until maximum number of iterations has been
reached or access solution discovered
Return the optimal data replica placement in the DC
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V. SIMULATION CONFIGURATION
A. SWARM INTELLIGENCE EXPERIMENTS
The experimental findings are discussed in this section, and
the replication method in the proposed cloud is designed.
It also uses the proposedMO-PSO andMO-ACO and various
distributions to position the replicas. CloudSim is utilized to
run these algorithms. This method’s execution time, speed
of entry, costs, placement efficiency, and high replication
availability are compared against other algorithms.

B. CONFIGURATION DETAILS
As illustrated in FIGURE 1, The cloud is created to represent
various types of DCs with various structures as revealed
in TABLE 4. Each DC is made up of a host and a series
of VMs that include blocks of usable data replicas. For
high DCs, three separate data placements were built. A total
of 1,000 cloudlets are selected at random for the data repli-
cation order. The proposed MO-PSO and MO-ACO are
evaluated against several well-known approaches. PSO, and
ACO parameters settings are presented in TABLES 5 and 6
respectively.

TABLE 4. Simulation parameters of the configuration system.

In TABLE 7, a distinction is made between similar work
and the proposed approach. It’s clear that the suggested
approach will handle a wide range of data replication and
positioning problems.

VI. RESULTS AND ANALYSIS
CloudSim is used in this paper to run tests on the dynamic
replica’s collection and location in the cloud. Through com-
paring the experimental resultsthe proposed MO-PSO and

TABLE 5. PSO parameters.

TABLE 6. ACO parameters.

TABLE 7. Related and the proposed work comparison.

MO-ACO algorithms are compared to sevderal well-known
algorithms.

A. FIRST EXPERIMENTS FOR CLOUDLETS OPTIMIZATION
The MO-PSO and MO-ACO approaches were used to mea-
sure the selection and positioning of replicas using CloudSim.
Cloudlets can be sent in CloudSim in 3 seconds, according
to the findings of the experiments.The second experiment
demonstrates that the suggested technique cuts CloudSim’s
overall execution time by 66% to less than one second. Exper-
iments indicate that the suggested technique, which makes

VOLUME 9, 2021 40247



A. Awad et al.: Novel Intelligent Approach for Dynamic Data Replication

use of CloudSim, is the most effective method for picking
and positioning replicas.

B. COMPUTATIONAL COMPLEXITY
The algorithm’s efficiency is determined by its computational
complexity, which is determined by the cost of running time
using big-O algorithms [69]–[71]. The proposed MO-ACO
and MO-PSO have O(N 2), as shown in Algorithm 1 and
Algorithm 2. The outer loop at most runs for N epochs, i.e.,
No. of ants (Nants) times number of DCs (No_DCs).

The algorithm decides what is accepted and refused depend
on the files put and takes into account the cost of file on the
Dc in terms of cost complexity. As a result, the major three
data file replicas must be mirrored on mid-to-low cost Dcs.

C. OPTIMAL REPLICA SELECTION EXPERIMENT
FIGURE 2 depicts the impact of utilizing the MO-PSO,
EFS and DCR2S algorithms on replication costs as the num-
ber of tasks assigned to users grows. When opposed to
DCR2S and EFS, it iis obvious that the suggested MO-PSO
approach reduces replication costs. When evaluated against
the DCR2S, whereas replication costs are equal to the bud-
get, the EFS replication costs are high expensive. ‘‘Constant
cost, maximize replica, and user waiting time’’ are the three
limitations.The proposed MO-PSO is extremely useful for
lowering replication costs, increasing availability, and low-
ering ITBDF. Cloudlets are utilized to optimize the replica
selection process.

FIGURE 2. Replication costs with different number of cloudlets.

The simulation results in FIGURE 3 demonstrate the
relationship between work time and job number by utiliz-
ing the proposed MO-PSO algorithm to reduce time costs.
MO-PSO decreases execution time, replica access time, and
the least-cost route. The simulation results revealed that the
suggested technique outperforms ACO and GASA.

The simulation results demonstrate the MO-PSO algo-
rithm’s ability to pick optimal replicas depend on the ITBDF
by accessing the most common replica. These results demon-
strate that MO-PSO is more efficient than other algorithms
in terms of the execution time required to access optimized
replicas, as shown in FIGURE 4.

FIGURE 3. Average job time.

FIGURE 4. Running time for selecting optimal replica.

D. VARIOUS REPLICATION SCENARIOS USING ZIPF AND
GEOMETRIC DISTRIBUTIONS
The computation of the Zipf and geometric distributions
using MO-PSO is discussed in this section, in addition to
a new technique for solving the optimal replica selection
problem. FIGURE 5 shows a comparison of the MO-PSO
algorithm with a real-time algorithm depend on Zipf and
geometric distributions. As a result, the average response
time for selecting data replicas grows as the number of data
replicas grows. Inside the requested amount of data replicas,
theMOPSO approach indicates a decreased average response
time. The proposedMO-PSO solution is clearly surpassing to
the other algorithms. FIGURE 5 depicts four selection repli-
cations in the cloud, each with a different average response
time for data replication as a function of the number of repli-
cas. From (a) to (d), a variety of scenarios are represented, and
we’ve built various average response time scenarios ranging
from 100 to 1000 cloudlets. When users need a certain num-
ber of data replicas, the MO-PSO technique will improve the
average response time of choosing data replicas.

The below are the benefits and parameters of the proposed
algorithm:

• Multi-Objective PSO (MO-PSO),
• Replication cost and time estimation,
• Fast replication speed with optimal nodes selection.
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FIGURE 5. Response time of different distributions scenarios in CloudSim.

E. THE PROPOSED MO-ACO EXPERIMENT
FOR REPLICAS PLACEMENT
The proposed MO-ACO algorithm is utilized to measure the
location of replicas by ant behavior and the number of cycles

FIGURE 6. Data transmission with different numbers data nodes.

FIGURE 7. Data transmission with different numbers of tasks.

byDCs in this experiment. In CloudSim, various distributions
utilized including Zipf and geometric distributions to deter-
mine the best placements in the DCs. As opposed to other
algorithms, the tests reveal that our MO-ACO approach pro-
duces the best outcomes. The proposed approach is assessed
depend on a number of factors, including the least-cost direc-
tion and distance to the best replica placement positions in
DCs using Zipf and geometric distributions. Depending on
the number of tasks and nodes, different methods are utilized
to assess the transmission mechanism in DCs. In FIGURE 6
to FIGURE 8, MO-ACO is utilized to measure the amount of
replicas distributed over DCs in addition to the data transfer
rate, which saves time and money. The results demonstrate
that the proposed algorithm outperforms the other algorithms.

F. SHORTEST PATH SELECTION USING PROPOSED
MO-ACO
An estimation of the shortest path using MO-ACO is seen
in this part, in addition to a novel method for solving opti-
mal placement. FIGURE 9 provides a comparison of the
MO-ACO algorithm versus the GASA algorithm, all of which
are depend on the shortest path issue and influence the opti-
mum data replica’s shortest path in nodes.

The data replications’ shortest path grows exponentially as
the number of data replicas grows. Within the number of data
replications requested, the suggested MO-ACO technique
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FIGURE 8. Total data transmission with different number of tasks.

decreases the shortest path. When comparing the MOACO
technique to the GASA technique in terms of minimizing the
shortest path, it is obvious that the MO-ACO technique is
superior. FIGURE 9 depicts many scenarios for the expense
of data duplication based on the number of replicas for four
of the shortest path cases. There are several scenarios ranging
from (a) to (c), and we’ve built various shortest path scenarios
using 1 to 13 data nodes and 1000 cloudlets.When consumers
need a large number of data replicas, the MOACO technique
will improve data file replication’s shortest path.

The advantages and specifications of the proposed algo-
rithm are listed as follows:
• Multi-Objective ACO (MO-ACO)algorithm,
• Replication cost and time estimation,
• Fast replication speed with optimal nodes placement.
• Selecting the shortest path.

G. REPLICATION COST AND KNAPSACK PROBLEM
FIGURE 10 depicts a trade-off between the MOACO and
DCR2S algorithms depend on the replication budget with the
knapsack dilemma, which has an effect on the data replication
budget. As a result, as the number of data replicas increases,
so do the costs of data replication. Based on the number of
replicas needed by users, the proposed MOACO algorithm
has a low cost. It’s easy to see how the MOACO technique
outperforms the DCR2S algorithm. FIGURE 10 depicts a
variety of expense scenarios for data duplication. It is obvious
from (a) to (d) that the suggested MO-ACO technique can
easily improve the file replication budget.

VII. PERFORMANCE EVALUATION
The proposed models were evaluated using five performance
indicators. Average response time, efficient network use,
capacity usage, replication frequency, and impact ratio are the
requirements.

A. AVERAGE RESPONSE TIME
In FIGURE 11, the replication average response time using
Zipf and geometric distributions are shown. From simula-
tion results, one can notice that the suggested technique

FIGURE 9. Different scenarios of replications over number of nodes.

minimizes the average response time by 12% compared with
the well-known PDR approach. If the number of user activi-
ties for collection and placement replications grows, the total
response time increases exponentially, but our approach
decreases time effectively. These data can be estimated using
Eq. (24) as follows [32]:

ART =
n∑
i=1

mi∑
j=1

(jsij(rt)− jsij(st))/
m∑
i=1

mi (24)

where

ART Average Response Time
jsij(rt) receiving time
jsij(st) sending time
mi number of tasks
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FIGURE 10. Different scenarios of data replication cost with the number
of replicas according budget.

B. EFFECTIVE NETWORK USAGE (ENU)
In FIGURE 12, effective network utilization tests the per-
centage of data passing across the domain network on a

FIGURE 11. Average response time for various data replication
techniques.

FIGURE 12. Effective network usage for different data replication
techniques.

scale from 0 to 1. Use requires the number of appropriate
accesses, reaction time and replications to other locations
that are nearby and have less expensive between DCs. The
use indicates that the bandwidth usage was more stable and
consistent for the proposed approach. (25) as follows [32]:

ENU = Nrfa + Nfa/Nlfa (25)

where

ENU Effective Network Usage
Nrfa number of access file from faraway site
Nfa total time of replication operation
Nlfa number of access file from near site

C. STORAGE USAGE
In FIGURE 13, the various storage consumption rates in
proposed scheme determine the relative data size when trans-
mitting and storing data replicas with respect to the DC size.
However, the rate is another indicator of the costs and the time
of transition between the DCs. (26) as follows [32]:

SU = FileSpaceAvailable/Space (26)

D. REPLICATION FREQUENCY
In FIGURE 14, the level of replication tests users’ access
to data by increasing the number of replicas. In these cases,
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FIGURE 13. Storage usage rates for different data replication techniques.

FIGURE 14. Replication frequencies for different data replication
techniques.

a higher replication level is achieved and load congestion
between DCs, the network, etc. is improved. However, our
strategy has access to themost common data with high replica
placement percentages among DCs. The experiments have
shown that the proposed approach is outperforms the most
common PDR algorithm based on availability and minimiz-
ing DC congestion.

E. HIT RATIO
FIGURE 15, the hit ratio is defined as the proportion of avail-
able data that is either nearer to or further away from tasks at
distances from 1000 to 3000. Our approach has obtained a
higher hit ratio relative to the most common PDR technique,
which reveals that our system can be adapted precisely to
the actions of model users when accessing nearer and further
replications. Hit ratio is presented in Eq. (27) [32]:

HR = No. of local file access/ No. of local file access

+No. of replicas + No. of remote file access (27)

F. DISCUSSIONS
The experiments discussed can be outlined as follows: First,
the proposed MO-PSO technique is utilized to access the
most common data using user request tasks to access data
replicas in the least period of time for the lowest cost and

FIGURE 15. Hit Ratios for various data replication techniques.

maximum availability after several attempts according to the
PSO requirements. Second, the proposed MO-ACO tech-
nique is utilized to position or place replications at appro-
priate locations based on prices, time and distances between
DCs. In addition, global search is improved by discovering a
new search field. The suggested technique produces results
in any period by constructing ACO solutions for expense,
availability, distance and time of data replication. The best
location of data duplication will be maintained as the best
global approach following many attempts to use the criterion.

VIII. CONCLUSION AND FUTURE WORK
The cloud ecosystem is one of the most critical scenarios for
achieving high availability and maximize replica efficiency.
This paper introduced two bio-based algorithms (MOPSO
and MO-ACO) for dynamic data replication and positioning.
MO-PSO provides optimal access to the most common data
replicas and optimizes the replication using ITBDF. The pro-
posedMO-ACO algorithm is utilized to refine the positioning
of data replicas previously identified using MO-PSO algo-
rithm in appropriate locations near users. The proposed sys-
tem architecture was designed and executed using CloudSim.
The efficiency of the suggested technique was evaluated
versus various replication techniques like ADRS, D2RS,
DRACO, EFS, and GA. The results of the simulation indi-
cated that the algorithms proposed were more effective and
superior than the algorithms compared.

In future work, the proposed system architecture will be
tested using on a real cloud computing environment. More-
over, we’re going to consider two interesting issues about
replica collection and positioning. First, the accuracy and
energy efficiency of complex data replication. Second, latest
swarm intelligence dynamic data replication algorithms in
cloud computing will be used.
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